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ABSTRACT 

 
Based on the wavelet transformation and adaptive Wiener Filtering, a new method was presented by 
the authors to perform the synchronization and detection of the binary data from the Free-Space 
Optical (FSO) signal [1].   It was shown in [1] that the Haar wavelet with a fixed scale is an 
excellent choice for this purpose.  The output of the filter is zero-mean and is closely related to the 
derivative of the binary data.  In this effort an analysis of the work in [1] is presented to obtain the 
probability of bit error using a Bayesian ternary hypotheses testing.  The analysis also results in 
determining optimum thresholds for the detection of binary data. 
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1. INTRODUCTION 

Free-Space Optical (FSO) communication system is an important area of research due to its 
important advantages of providing a very large bandwidth and relatively low cost of 
implementation.  These systems have many desirable applications, perhaps the most important of 
which is their use in providing connection from the high bandwidth fiber-optic backbone to the 
buildings and businesses desiring high bandwidth access without the high cost of installing fiber 
through the local infrastructure.   The FSO communication systems also have numerous advantages 
over the Free-Space RF (FSRF) systems. 
Bit rates of FSO systems are approaching 100 Gbits/sec [2-5].  Besides, atmospheric propagation 
effects cause the FSO channel to be ‘bursty’ in nature and highly variable with a rate of change as 
high as 1 kHz and with power fades greater than 10 dB.  Therefore, because of a very high bit rate 
and a time-varying channel, the bit error reduction is a difficult and vital area of research.  The 
purpose of this paper is to introduce and implement a new and effective method to deal with these 
issues.   
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In a typical RF digital communication problem, the binary data is designed to avoid Inter-symbol 
Interference (ISI) and is digitally modulated.  Here, the channel is, in general, modeled as band-
limited, Additive, White and Gaussian Noise (AWGN), and the demodulated data consists of a 
string of pulses with a constant power.  The value of the mean is typically zero and the variance of 
the data is a constant.  The detection problem, therefore, is to use matched filtering and constant 
thresholding to identify the digital data.  In contrast, the FSO communication channels can be 
modeled as wide-band and time-varying systems.  The selected format of the binary data is typically 
NRZ-L2 [6, p294], with no sinusoidal modulation.  The received FSO signal consists of a high 
frequency data, which is varying in its amplitude.  This corresponds to a non-stationary data with 
variable and irregular values of mean and variance.  Consequently, the conventional matched 
filtering and constant thresholding is not applicable.  Figure 1 displays a typical received FSO 
signal.  This figure shows that the binary data is a noise-like signal with variable variance and mean.  
The data can be viewed as a high frequency signal modulating a relatively much lower frequency 
waveform.   In this paper an analysis of the work in [1] is presented to obtain the probability of bit 
error using a Bayesian ternary hypotheses testing.  The analysis also results in determining optimum 
thresholds for the detection of binary data.   

 
 

2. MATHEMATICAL MODELING AND PROCESSING OF FSO SIGNAL 
 

The received FSO data can be mathematically described as follows:  

 ( ) ( ) ( ) ( ) ( )L Hr t t d t m t m tσ= + +   (1) 

where ( )d t  represents the binary data (message) and ( )tσ  signifies the variation of the signal 
amplitude due to atmospheric transmission effects.  In addition, the model assumes two types of 
additive noise. The first noise, ( )Lm t , stands for the relatively low-frequency fluctuations of the 

signal mean value caused by insufficient ac coupling.  The second term, ( )Hm t , characterizes the 

additive white Gaussian noise (AWGN) with zero-mean.  As reported by the authors in [1], and 
depicted in Figure 2, we first pass the data ( )r t  through an adaptive Wiener Filter (AWF) for 
denoising.   The output of this filter is then passed through a Haar Wavelet transformer with the 
transfer function [1]:                             
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2 “One” is represented by level “+1” and “Zero” is represented by level “-1”. 
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Figure 1.  A Frame of Received FSO Data   
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Figure 2.  Filtering and Sampling of Received Data 
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where a is the scale of the Haar wavelet.  Figure 3 depicts a typical FSO data at the input and the 
output of the filter (2) with fixed scale a.  As shown in this figure, the filter, shown by (2), 
efficiently removes ( )Lm t in (1), and transforms the received data into a zero-mean signal 

resembling an approximation of its derivative.   The filtered data, as depicted in Figure 3, is then 
sampled at the multiple integers of bit time, assuming that it has been properly synchronized [1].  In 
the following section, we establish a ternary hypotheses test to calculate the probability of bit error.  
 
 
 

3. CALCULATION OF PROBABILITY OF BIT ERROR 

This section is devoted to the calculation of the probability of bit error.  In view of Figure 3, the 
output y of the sampler shown in Figure 2 can be considered as a scalar random variable, which can 
be characterized by a ternary hypotheses test as follows3: 
 

 
0

1 1

2 2

: ,

: . ,

: . ,

H y w

H y d f w

H y d f w

=
= + +
= − +

 (3) 

where (3) is followed from (1) assuming that the residual noise at the output of the sampler is 
characterized by w and is considered to be white and Gaussian with mean zero.  In addition, if , 

1,2i =  are Rayleigh fading random variables, independent of w, and d represents a known, non-
negative quantity proportional to energy of the binary data.  Without loss of generality, we assume 
that 1.d =  Hypothesis 0H  corresponds to a scenario for which, at the transition time, there has not 

been any bit change ( 0)d = , and hypotheses 1H  and 2H , on the other hand, represent 

circumstances for which bit transitions have occurred from low-to-high and high-to-low, 
respectively.  Based on the aforementioned assumptions, we can establish a ternary hypotheses test 
by determining the conditional probability density functions (pdf) of y given the three hypotheses 

0H , 1H  and 2H  [7 P23].  A maximum likelihood detector can then be implemented by evaluating 

these pdf’s at any given observation Y  and select the largest. 
 
 
 
 
 
 
 
 
 
                                                 
3 We use lower case letters for a random variable.  Upper case letters are utilized to signify the running values of the 
corresponding random variable.  Also, the model (3) considers the fact that the fading channel may act differently for 
high and low bits.   
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Figure 3.  Portion of the FSO Data (blue) and its Corresponding CWT (red) 
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To begin, note that  
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Also, by definition, if , 1,2i =  are Rayleigh distributed random variables; therefore,  
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where (.)u  is the step-function.  It follows from (5) and (7) that  
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with the known property that 
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 ( ) ( ) 1Q x Q x+ − =  (10-b) 

Similarly, it can be shown that 
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It is noted that the value of Y  for which 1 0( | ) ( | )y yp Y H p Y H=  characterizes the threshold value 

1T .  Similarly, the values of Y  for which 2 0( | ) ( | )y yp Y H p Y H=  signifies the threshold value 2.T  

Consequently, it follows from (8) that at 1Y T=  we attain 
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Correspondingly, it follows from (11) that at 2Y T=  we obtain 
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For convenience, define an auxiliary function 1( )g Z  as follows: 

 { }2 / 2
1 1( ) 1 2 ( )Zg Z A Ze Q Zπ= + −  (15) 

where 
1

1 2
1

1

f
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B σ

=  and 
2

1

.
w

Y
Z

B σ
=   It follows from (15) that the value of Z ζ= for which 

1( ) 1g Z =  can be used to determine the threshold value 1T ; that is, 

 

 2
1 1 wT B σ ζ=  (16) 

Note also from (9) and (16) that 
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In view of (14), the threshold 2T can be evaluated in a similar fashion.  To demonstrate, let 

 { }2 / 2
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in which ψ  represents the value of Z for which 2 ( ) 1g Z = .   

Once 1T  and 2T  are calculated, we can obtain the average probability of error which can be 

obtained by considering the conditional probability of incorrect reception ( | )iP Hε  as 

 

 [ ]0 1 2

1
( ) ( | ) ( | ) ( | )

3
P P H P H P Hε ε ε ε= + +  (20) 

where, without loss of generality, it is assumed that the hypotheses are all equally likely.  It follows 
from Figure (4), and (10-b), that 
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Figure 4.  Conditional pdf’s of the Ternary Hypotheses 
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Also, in view of Figure 4, it follows that 
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In Appendix A, it is shown that (22) becomes 
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Using (10-b), (23) can be simplified as follows: 
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It is noted from Figure 4 that 
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It is eminent from (8) and (11) that 2( | )yp Y H−  and 1( | )yp Y H  have the same forms when we 
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Hence, the total average probability of error can be calculated by substituting (21), (24) and (26) in 
(20).  Finally, it should be mentioned that for the case for which 
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fσ , it follows that 1B  

= 2B  and 1 2T T T= − = .  Consequently, it is seen from (20) and (21) that ( )P ε  becomes 
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In view of hypotheses 1H  and 2H  in (3), we define the Distorted Signal-to-Noise Ratio (DSNR) as: 
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For convenience, we assume that 
1 1

2 2 2
f f fσ σ σ= = ; hence, 1 2 .DSNR DSNR DSNR= =  Figure 5 

illustrates the total average probability of error (27) as a function of DSNR .  This figure shows that 
as 2 2/f wσ σ  increases, the probability of error decreases.  Figure 6 depicts the normalized threshold 

/ wT σ  as a function of 2 2/f wσ σ .  It is seen from this figure that the normalized threshold / wT σ  is a 

monotonic function of 2 2/f wσ σ .  A practical implication of this result is that the optimum threshold 

can be evaluated from Figure 6 by a table-look-up strategy.  That is, once 2 2/f wσ σ  is estimated, the 

normalized threshold is found from Figure 6, and the optimum threshold is estimated by multiplying 
the result by .wσ  
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Figure 5.  Average Probability of Bit Error Versus DSNR 
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Figure 6.  Normalized Optimum Threshold Versus DSNR 
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Appendix A – Derivation of 1( | )P Hε   

The objective of this appendix is to illustrate the derivation of 1( | )P Hε  shown in (23).  We know 

from (8) that  
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Hence, the conditional probability of error 1( | )P Hε  becomes 
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Application of (4) in (A-2) renders, 
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The last integral in (A-3) can be solved using integration by parts; that is, 

 udv uv vdu= −∫ ∫  (A-5) 

with 
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Hence, 
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Furthermore the second integral in (A-3) is solved as  
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Applications of (17), (A-4), (A-7), and (A-8) in (A-3), after collection of terms and further 
simplification, finally leads to (23). 
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